Suppression of Arctic Air Formation with Climate Warming: Investigation with a Two-Dimensional Cloud-Resolving Model

نویسندگان

  • TIMOTHY W. CRONIN
  • HARRISON LI
  • ELI TZIPERMAN
چکیده

Arctic climate change inwinter is tightly linked to changes in the strength of surface temperature inversions, which occur frequently in the present climate as Arctic air masses form during polar night. Recent work proposed that, in a warmer climate, increasing low-cloud optical thickness of maritime air advected over highlatitude landmasses during polar night could suppress the formation of Arctic air masses, amplifying winter warming over continents and sea ice. But this mechanism was based on single-column simulations that could not assess the role of fractional cloud cover change. This paper presents two-dimensional cloud-resolving model simulations that support the single-column model results: low-cloud optical thickness and duration increase strongly with initial air temperature, slowing the surface cooling rate as the climate is warmed. The cloud-resolving model cools less at the surface than the single-columnmodel, and the sensitivity of its cooling to warmer initial temperatures is also higher, because it produces cloudier atmospheres with stronger lowertropospheric mixing and distributes cloud-top cooling over a deeper atmospheric layer with larger heat capacity. Resolving larger-scale cloud turbulence has the greatest impact on the microphysics schemes that best represent general observed features of mixed-phase clouds, increasing their sensitivity to climate warming. These findings support the hypothesis that increasing insulation of the high-latitude land surface by low clouds in a warmer world could act as a strong positive feedback in future climate change and suggest studyingArctic air formation in a three-dimensional climate model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass tra...

متن کامل

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions

Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understandingArctic climate and its present and future ch...

متن کامل

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change (e.g., IPCC 1997). The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) sites of the Atmospheric Radiation Measurement (ARM) Program are designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks are bel...

متن کامل

Review of Science Issues, Deployment Strategy, and Status for the ARM North Slope of Alaska–Adjacent Arctic Ocean Climate Research Site

Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska–Adjacent Arc...

متن کامل

Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017